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Influence of air and material damping on 
dynamic elastic modulus measurement 
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MI 48824, USA 

In this paper, air and material damping effects on the dynamic elastic modulus measurement of 
a flexural vibrating beam with free ends are evaluated, according to the Bernoulli-Euler beam 
equation. The theoretical analysis indicates that the measured elastic modulus is not 
substantially influenced by material damping. However, the measured modulus decreases with 
an increasing extent of air damping. In addition to theoretical analysis, experimental results for 
glass and alumina specimens also show that air damping decreases the measured modulus. 

1. Introduct ion  
Dynamic elastic modulus measurement can provide 
information on microstructural material property 
changes [1-5]. For example, Chou and Case [5] 
proposed that microcracking recovery at room tem- 
perature increases the elastic modulus of yttrium iron 
garnet by 0.42%. In general, a small material property 
change may lead to only a slight variation of elastic 
modulus. Thus, to use the modulus measurement as 
a route for detecting material change, the measured 
modulus variations due to other possible factors 
should be investigated. 

The dynamic elastic modulus of a beam can be 
measured using the resonance method in which the 
tested beam is suspended by two fine wires as shown in 
Fig. la [6, 7]. The flexural vibration of the beam is 
driven through the driver that connects to a variable- 
frequency oscillator. The resonance frequency at 
which the vibrating amplitude is maximized is deter- 
mined by varying the oscillator frequency. The elastic 
modulus is then calculated according to the resonance 
frequency. However, the modulus calculation formula 
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is generally based on the undamped Timoshenko 
beam equation, neglecting damping effects on the 
resonant behaviour I-6, 7]. 

Damping phenomena always exist in a vibrating 
beam [8-10], resulting from internal material damp- 
ing and/or external environmental effects. Thus, the 
beam vibration without external driving force will die 
out after a certain time. The vibrating behaviour 
involved in the dynamic elastic modulus measurement 
is just a damped vibration. The driver provides the 
external driving force for continuous beam vibration. 

In this paper, air and material damping effects on 
the measured elastic modulus are theoretically 
analysed according to the Bernoulli-Euler beam equa- 
tion. Furthermore, the air damping effect is experi- 
mentally studied using microscopic slide glass and 
alumina substrate specimens. 

2. Theoret ical  analysis 
2.1. Governing equation and its solution 
The Bernoulli-Euler beam equation can describe the 
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Figure 1 (a) Block diagram of apparatus for dynamic elastic modulus measurement; (b) specimen positioned for resonance frequency 
measurement and its flexural vibration of fundamental mode. 
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vibrating behaviour of a beam in vacuum with mater- 
ial damping [9-12]. The governing equation is 
1-10-12] 

~4w(x,t) ~w(x,t) (~)~2w(x,t) 
E1 ~x  4 + C ~ - -  + ~t 2 

= F(x, t) (la) 

~X 4 

where 

where E, C, a, p and g represent elastic modulus, 
damping parameter, cross-sectional area, density and 
the acceleration of gravity, respectively. I is the second 
moment of inertia of the beam cross-section with 
respect to the neutral axis. The function w(x, t) is the 
flexural deflection of the beam, which is a function of 
time t and the position along the longitudinal axis, x. 
F(x, t) is the external driving force for continuous 
beam vibration. 

If a beam vibrates in air (or other fluid medium), air 
damping may have a substantial effect on the beam's 
vibration [13-15]. Thus, the added mass caused by 
the relative acceleration between the vibrating beam 
and the surrounding .medium should be introduced 
into Equation la [16-19]. The governing equation 
then becomes 

El~4W(X,t) ~w(x,t) (Hap']~ew(x, t)  
+ c ~ + \ g / ~t ~ 

= F(x, t) (lb) 

H = 1 + C m P a (2) 
P 

where Pa and Cm are air density and inertia coefficient, 
respectively. The beam's vibration in air (or other fluid 
medium) corresponds to H > 1; H = 1 relates to the 
vacuum condition. 

As schematically shown in Fig. lb, the bending 
moment and the shear force are zero at the free ends of 
beam so that the boundary conditions are described 
by 

~2W(0, t) ~2w(L, t) 
- 0 = 0 ( 3 a )  ~x 2 ~x 2 

~3W(0, t) ~3w(L, t) 
- 0 - 0 ( 3 b )  

~X 3 ~X 3 

where L is the length of the beam. To investigate the 
damping effect on natural frequency, we calculate the 
general solution of the homogeneous form of Equa- 
tion lb by using the method of separation of variables, 
The solution is 

w.(x, t) = exp( -  ~t)[C 1COS(~nt ) Jr- Czsin(13.t)] 

x {cos(k.x) + cosh(k.x) 

cos (k.L) - cosh (k.L) 
sin (k.L) - sinh (k.L) 

x [sin(k.x) + sinh(k.x)]} (4) 

where Cg 

- 2apH (5) 

(4EIapgk4.H - C 2 9 2 ) 1 / 2  
[3 n = (6) 

2apH 

cos(k.L)cosh(k.L) = 1 (7) 

Ct and C2 are integer constants. The subscript n 
corresponds to the nth mode of harmonic flexural 
vibration and w. describes the vibrating behaviour of 
the beam with the natural frequency f =  ]3./2n. The 
first root of Equation 7 is k t = 4.730040 8/L, corres- 
ponding to the fundamental mode n = 1. Thus, the 
damped natural frequency of the fundamental mode is 
calculated from 

[31 ( 4 E I a p g k 4 H -  C292) 1/2 
f - - (8) 

2n 4napH 

If C = 0 and H = 1, we obtain the undamped natural 
frequency of the fundamental mode: 

(4EIapgk~) 1/2 
f = (9a) 

4nap 

Rearranging Equation 9a yields 

52~(2pL 4 
E = 0.096 h2 (9b) 

where h is the beam's thickness. Equation 9b is a 
formula to calculate the dynamic elastic modulus 
without considering the damping effect (see Appen- 
dix A). The units adopted are Hertz, metre and kilo- 
gram. The elastic modulus is expressed in kgm -2 
(1 kgm -2 = 9.8 Pa). 

Strictly speaking, the maximum amplitude detected 
by the pickup in Fig. la is associated with the 
resonance frequency, which does not relate to either 
Equation 8 or Equation 9a. In order to derive the 
resonance frequency, the general solution of the 
non-homogeneous form of Equation lb should be 
calculated. 

The vibrating beam illustrated in Fig. lb is 
subjected to the external sinusoidal force F(x, t) 
= Po sin (~t) by means of the driver. Po represents the 

maximum force acting on the beam and {/2re is the 
vibrating frequency of the oscillator. The free-end 
beam encounters a concentrated force at the suspen- 
sion point linked to the driver. Thus, the correspond- 
ing deflection w(x, t) can be expressed in terms of a 
series expansion (the normal mode method [9, 10]): 

w(x, t) = ~ z.(t) tcos(knx) + cosh(k.x) 
n=l  ( 

cos (k.L) - cosh (k.L) 
- [sin (k. x) 

sin (k.L) - sinh (k.L) 

+ sinh(k.x)]} = .=1 ~ z.(t)@.(x) (10) 

where z.(t) is an equation of the time factor. Equation 
10 satisfies the boundary conditions of Equation 3. 
Substituting Equation 10 into Equation lb, we obtain 

E1 ~ ~.(x)'"' z.(t) + C ~ d~.(x)z.(t)' 
n = l  n= l  

Hap 
+ L r F(x, t) (11) 

g n= l  
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Figure 2 Numerical analysis of the resonant behaviour of a vibrat- 
ing beam. (a) Variation of the maximum vibration amplitude with 
respect to the frequency of external driving force, ~,/2~z; (b) influence 
of damping parameter C on the maximum vibration amplitude and 
resonance frequency; (c) effect of air damping H on resonant 
behaviour. 

where 

D,, 
G,, = (Am - ~2)2 + 4~2~2 (18) 

C3 and C4 are integration constants. As a result, the 
general solution of the non-homogeneous form of 
Equation lb is obtained by substituting Equation 17 
into Equation 10. 

�9 ,(x) has orthogonal properties [9, 10]. Thus, multi- 
plying Equation 11 by ~,,(x) and integrating from L 
to 0 yields 

k4..Elzm(t);~d~2dx + Cz,,(t)' ;~OZdx 

HaP9 . -,, ~L z -  ~vf"' + Zmft) JOq)"dX = F(x, t)d~mdx (12) 
1 

Note that ~,.(x) .... - k ~ , , ( x ) =  0. Equation 12 can 
be rewritten as 

z,,(t)" + 2~z,,(t)' + Amz,,(t ) = Dmcos(~t) (13) 

where 

Cg 
- (14) 

2apH 

EIK~g 
A m - (15) 

apH 

gPoO,.(xl) 
- -  L 

D,, HaOfoO~d x (16) 

where xl is the distance from the free end to the 
excited point of the beam (Fig. lb). The general solu- 
tion of Equation 13 is 

z,,(t) = exp( - -  ~t)[C3eos(~Jmt ) Jr- C4sin(l~mt)] 

+ G,,[(A, , -  ~2)cos(~t) + 2~s in(~ t ) J  

(17) 

4 9 1 2  

2 .2 .  R e s o n a n c e  f r e q u e n c y  
Equation 17 is divided into two parts. The first term, a 
transient part which will die out quickly, is attributed 
to the initial vibrating conditions. The second term is 
a steady-state part corresponding to the external sin- 
usoidal force. Thus, the steady-state response of the 
forced vibration can be simply described by 

w(x, t) = z.(t)O.(x) 
. = 1  

= ~, G,[(A, - ~2)cos(~t) 
/ I = 1  

+ 2 ~  sin (~t)] O,(x) (19) 

The resonance frequency is the frequency at which the 
absolute value of w(x, t)/P o is maximized. According 
to Equation 19, Fig. 2a illustrates the variation of the 
maximum amplitude, ]w(x, t)/Po], with respect to the 
frequency of external driving force, ~/2n. The first 
three resonance frequencies, corresponding to vibra- 
tion modes n --- 1, 2 and 3, significantly separate from 
each other. (The input data for the numerical analysis 
are listed in Table I.) In this work we are particularly 
concerned with the effect of the damping parameters, 
C and H, on the resonant behaviour of the beam. 
When H is constant, the maximum amplitude de- 
creases with an increase of C (Fig. 2b). However, the 
resonance frequency is not substantially influenced by 
C. If C is constant, the resonance frequency decreases 
with an increase of H. However, the maximum ampli- 
tude increases with increasing H (Fig. 2c). 



T A B L E  I Numerical input data for analysing damping effects on 

the resonance frequency of a vibrating beam 

Elastic modulus, E = 6.9 x 109 kgm 2 

Dimension of beam = 0.076 m x 0.0254 m x 0.001 27 m 
Density, 9 = 2770 kg m -  3 
Position at which the vibration amplitude is calculated, x = 0.076 m 
Position of linkage to driver, x~ = 0.005 m 

The resonance frequency can also be simply calcu- 
lated according to the condition that the first deriv- 
ative of [w(x, t) /Pol with respect to ~ is equal to zero. 
Based on numerical analysis, the amplitude peak of 
the fundamental mode is given predominantly by the 
contribution of the first term of Equation 19. As a 
result, the resonance frequency of the fundamental 
mode, n = 1, is calculated according to 

d G 0 = ~ l  1[(A1 --  ~2)COS(~ t) 4- 2~sin(~t)]CIll(X)l 

d [(Dlcos(~t~ + O)@l(x) 
- d~ _~ ~ -~  + 4~2~T<~1/2 (20a) 

where 

2{a 
tan 0 - AI - ~ 2  

Furthermore, 

d 1 
0 = ~ [(A1 _ ~2)2 + 4~2=23a/2 (20b) 

Calculating from Equation 20b yields 

(4EIapgk4H - -  2C292)1 /2  
f - - (21) 

2x 4~apH 

Equation 21 represents the damped resonance fre- 
quency of the fundamental mode. It can clearly ex- 
plain the variation of resonance frequency with C and 
H, illustrated in Fig. 2b and c. However, the magni- 
tude of the damping parameters C and H should be 
further analysed to determine the extent of the damp- 
ing effect on the beam's vibration. 

2.3. D a m p i n g  ef fec ts  
Damping (internal friction), Q- 1, can be measured by 
using the free vibration decay method. When the 
external driving force from the driver is stopped, the 
vibrating amplitude of the beam exhibits a logarithmic 
decrement. The internal friction is calculated from 
[1-6, 20] 

1 l n ( I W l ( X ' t ~  (22) 
Q-I  _ xm \ lw~(x,  t31J 

where Iwl(x, to)l and IWl(X, ti)l represent the max- 
imum vibrating amplitude occurring at the times t o 
and t~, respectively, m is the total vibrating number 
between to and t~, and is calculated from 

( t i -  to)131 
m = (h - t o ) f  - 2re (23) 

Substituting Equation 4 into Equation 22, we obtain 

Q-1 1 " in ( e x p ( -  ~ ] (24) 

Combining Equations 5, 6, 23 and 24 yields 

Hap 2 2 

Thus, Equation 21 becomes 

{ (4ElapHgk~)~/z 1 - 2 
f = 4rcapH Q-~; 

(25) 

+ lj2 

(26a) 

Furthermore, 

e = 0.096~., h2 4 - ( Q - 1 ) 2  1 (26b) 

Equation 26b is an elastic modulus calculation for- 
mula taking account of the air and material damping 
effects. Equation 9b is commonly used to calculate the 
dynamic elastic modulus; however, it neglects the 
damping effect. Thus, we should investigate the differ- 
ence between the measured moduli calculated from 
the two formulae. 

The beam's vibration in a vacuum relates to H = 1. 
When a set of values of resonance frequency fl and 
internal friction Qi -I are measured in a vacuum, 
Equations 9b and 26b give elastic moduli E 1 and E0, 
respectively. The relative difference is 

E 1 - E o 8 
- 2 (27)  

E 1 4 -- (Q-(1)2 

Internal friction usually ranges from 10 _2 to 10 -s 
[1-4, 20]. Thus, the relative difference approximates 
to 10-s, which does not have substantial meaning in 
comparison with the measuring sensitivity of the dy- 
namic resonance technique. As a result, Equation 9b 
can replace Equation 26b to calculate the dynamic 
elastic modulus of a vibrating beam in a vacuum. 
Furthermore, Equation 27 also infers that E o is not 
substantially influenced by the change of internal 
material damping if AQ- 1 < 1 0 -  2. 

When the resonance frequency f2 and internal fric- 
tion Q ~ a are measured in air (or other fluid medium), 
Equation 9b gives a corresponding elastic modulus 
E 2. The difference between E 2 and E 1 is due to air 
damping itself. The relative difference is calculated 
from 

E 2 --  E 1 f22 - f~  
E2 f22 

(4--(Qll)2)(4-~" (Q21)2~ 
= 1 --  H ~ ( Q l l  ~- - ( Q 2 1 ) 2  J 

(28a) 

If both Q i  1 and Qyt  still range from 10 - 2  to  10 -5 ,  

Equation 28a becomes 

E 2 --  E 1 9 a  
1 -  H = -  C m (28b) 

E2 9 

where 9a is the surrounding air density (or the density 
of other fluid medium) in which E2 is measured. 
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Equation 28b indicates that the measured modulus 
calculated from Equation 9b increases with a decrease 
of p,. In general, Cm is about 1 to 10 [14] and air 
density at 1 atm is 0.0012gem -3 [19]. Thus, air 
damping may decrease the measured modulus of win- 
dow glass (p ~ 2.2 gem -3) by 0.3%, which is a detect- 
able change for the dynamic resonance technique. 

3. Experimental  procedure 
Commercial microscopic glass slides and alumina 
substrate specimens were used for detecting the air 
damping effect on the dynamic elastic modulus 
measurement. The glass slides, 7.6 cm x 2.54 cm 
• 0.127 cm, were annealed in an electric furnace in air 
at 600~ for 0.5 h. The annealed glass was then 
suspended using cotton strings in a vacuum chamber 
which connected to a mechanical pump (Fig. la). The 
suspension points linking to the driver and the pickup 
were close to the specimen's nodes for the fundamental 
mode, in order to reduce the possible mechanical 
restraint due to the cotton strings (Fig. lb). After the 
specimen was in a vacuum (0.1 cm Hg) for at least 
15rain, we measured the fundamental resonance 
frequency of flexural vibration. The measuring techni- 
ques are described elsewhere [6, 7]. The resonance 
frequencies were repeatedly measured while the 
vacuum was decreased step by step, by leaking air 
through a by-pass nozzle. The variation of the maxi- 
mum vibration amplitude with respect to air pressure 
was detected using an oscilloscope and a voltmeter. 
The corresponding modulus was calculated using 
Equation 9b. Internal friction was measured accord- 
ing to the free vibration decay method and was calcu- 
lated using Equation 22. It is emphasized that the 
tested specimens was never touched during the re- 
peated measurements. 

Alumina specimens 13.46 cm x 1.26 cmx 0.1 cm 
were annealed at l l00~ for 10h. The resonance 
frequency of the annealed specimens were then meas- 
ured as described above. To investigate the variation 
of the inertia coefficient Cm with specimen size, an 
alumina specimen was cut using a low-speed diamond 
saw. The corresponding resonance frequencies were 
then measured step by step. The new suspension 
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points of the cut specimen were close to the specimen's 
nodes for the fundamental mode. 

4. R e s u l t s  and d i s c u s s i o n  
Air can contribute to the environmental damping 
effect on a vibrating beam. Fig. 3a indicates that the 
measured dynamic elastic modulus of the glass slides 
tested in a vacuum chamber is a function of air 
pressure (air density). E is the elastic modulus calcu- 
lated from Equation 9b. The subscripts 1 and 2 rep- 
resent air pressure = 0.1 cm Hg and air pressure 
> 0.1 cm Hg, respectively. The relative difference, 
(E 2 - E 1 ) / E  2, linearly decreases with decreasing air 
pressure, which coincides with the theoretical analysis 
expressed in Equation 28b. The solid line is the least- 
squares best-fit line. The slope relates to the inertia 
coefficient of the glass slides (Appendix B). 

Since the vibration amplitude appearing on an 
oscilloscope is an amplified signal, we study the influ- 
ence of air pressure (air damping) on the resonant 
behaviour of glass slides by means of the relative 
amplitude change, (w 2 - w l ) / w 2 ,  where w is the 
maximum vibrating amplitude when the resonance 
phenomenon occurs in the glass specimen. Fig. 3b 
indicates that the relative amplitude change decreases 
with decreasing air pressure. The experimental results 
agree with the theoretical analysis illustrated in 
Fig. 2c. The measured internal friction of glass slides 
linearly decreases with decreasing air pressure 
(Fig. 3b). The change is attributed to air damping, 
which makes physical sense. 

According to Equation 28b, the inertia coefficient 
Cm is an important factor for the measured modulus 
change. As a result, the variation of Cm with specimen 
size change was investigated by cutting an alumina 
specimen step by step during the repeated resonance 
frequency measurement. Fig. 4 shows that C m de- 
creases with a decrease of the retained specimen's 
length, and that the decrease of Cm corresponds to an 
increasing resonance frequency. Consequently, Cm is 
seemingly a function of either the specimen's length or 
the resonance frequency. However, more work is still 
required to further determine the factors related to the 
change of Cm. 
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Figure 3 Resonant  behaviour of microscopic glass slides tested in a vacuum chamber, (a) Variation of the measured modulus  with air 
pressure; (b) variation of (A) max i mum vibration amplitude and ( 0 )  internal friction with respect to air pressure. 
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Figure 4 Variation of inertia coefficient Cm and resonance frequency with retained length of an alumina specimen. 

5. Conclusions 
This paper has studied air (or other fluid medium) and 
material damping effects on the resonant behaviour of 
a vibrating beam. Theoretical analysis indicates that 
internal material damping (internal friction < 10 -2) 
does not substantially change the resonance frequency 
of a beam vibrating in a vacuum, in comparison with 
the measuring sensitivity of the dynamic resonance 
technique. Thus, the modulus can be calculated using 
the formula which derived from the undamped 
Bernoulli-Euler beam equation. However, theoretical 
and experimental results indicate that air damping can 
decrease the resonance frequency of a vibrating beam. 
If tlTe air damping effect is not taken into account, the 
measured elastic modulus, according to the undamped 
modulus calculation formula, will decrease with the 
increasing extent of air damping. 

Appendix A 
Equation 9b is similar in form to the modulus cal- 
culation formula induced from the undamped 
Timoshenko beam equation, except that the latter is 
multiplied by an extra correction factor [6, 7]. The 
multiplying factor associated with the Timoshenko 
equation is due to the effects of shear deformation and 
rotatory inertia. When a beam has a large dimensional 
ratio of length to thickness, the factor becomes of little 
importance. For instance, the multiplying factor is 
about 1.008 for a beam whose dimensional ratio is 30 
[6, 7]. Thus, Equation 9b is acceptable to evaluate the 
dynamic elastic modulus of a slender beam. 

A p p e n d i x  B 
The ideal gas law is [21] 

P V  = RT (29) 

where V is the molar volume of system at pressure P 
and temperature T. R is the gas constant. Equation 29 
yields the relation: 

~--- (Pr~P a (30) o. \ e , l  

where Pa is the air density at ambient pressure P,.  p, is 

the air density at a reference pressure Pr- For example, 
Or is equal to 0.0012 g c m  - 3  when P r  = 76 cm Hg [19]. 
Combining Equation 28b and Equation 30 gives 

E2 = --  Cm Pa (31) 

Thus, the inertia coefficient of the glass slide, C m = 8.6, 
can be calculated from the slope of the solid line in 
Fig. 3a. 
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